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INTRODUCTION 

The house rat (Rattus rattus) and cockroach (Periplaneta 
americana) are among the world's most prolific and 

widespread urban pest species. Both pests inhabit a wide 

range of habitats including human and animal habitats. 
The R. rattus and P. americana gut microbiome comprise 
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horizontally transmitted and vertically transmitted 

microbes. Both of their guts harbour a variety of 
microorganisms, which play an important role in the health 

and fitness of host animals. The microbes contribute 

positively to the development and growth of the host by 

participating in food digestion, host nutrition, protection 
against pathogens and increasing the immune response 

(Engel and Moran, 2013a; Huang et al., 2013; Yang et al., 

2017). They protect the host against pathogens by 

inhibiting colonisation and enhancing their immunity 
(Engel and Moran, 2013a). As reported by (Engel and 

Moran, 2013b; Brune and Dietrich, 2015; Claus et al., 

2016) certain toxins such as pesticides can be metabolised 

by the gut microbiome. Moreover, recent studies have 
shown that the microbiome can impact different host 

behaviours, including frequency of social interactions, 

mate choice, hyperactivity, anxiety, depression and others 

(Tinker and Ottesen, 2016). 
The assemblage and composition of the bacteria 

community inhabit the three sections of the alimentary 

canal, but many studies reported that the hindgut has the 

highest bacterial density and diversity (Cruden and 
Markovetz, 1987;  Schauer et al., 2012; Bauer et al., 2015; 

Kakumanu et al., 2018). Like in other animals, the gut 

microbiome in P. americana and R. rattus is dictated by 

the interplay of host genetics, early environment, and 
immediate environment (Tinker and Ottesen, 2016). 

Typical examples of a host’s environment that can cause a 

major impact on the microbiome include temperature 

(Sepulveda and Moeller, 2020), diet (Turnbaugh et al., 
2009), and/or housing conditions (Ericsson and Franklin, 

2015; Caruso et al., 2019). Arguably, the interaction 

between these and other domestic pests also influences the 

composition and diversity of the gut microbiome. 
Understanding the gut microbial communities is 

essential as it contributes to understanding their biology 

and clinical relevance since they are engaged in 

disseminating pathogens (Kakumanu et al., 2018). Based 
on the aforementioned, studies have emphasised the urge 

to acquire an in-depth understanding of host-microbiome-

parasites interactions. These interactions are critical for 

disease transmission. As such, the accrued knowledge will 
not only establish mechanisms via which gut-microbiome 

modulates the host’s (P. americana and R. rattus) ability 

to transmit and/or harbour bacterial and possibly other 

pathogens but also may reveal symbiotic microbes that 
may be exploited to achieve transmission blocking in 

disease vectors/reservoirs. Several symbionts have been 

identified as potential strategies for reducing disease 

transmission, for example, Wolbachia, Sodalis, 
Wigglesworthia, Rhodococcus and Serratia (Weiss and 

Akoy, 2011). 

This study aimed to assess the composition of the 

hindgut bacteria microbiome of cockroaches and house 
rats since little is documented, especially in Tanzania, 

about the hindgut bacterial composition of these two pests 

to ascertain their potential for disease transmission. 

MATERIALS AND METHODS 

The Ethics Statement 

The Ethical approval for the study was given by the ethical 
committees of Sokoine University of Agriculture, 

Tanzania, with reference No SUA/AMD/R.1/8/763, 

approved on 5th January 2022. 

Description of the study area 

This study was conducted in Morogoro Municipal and 

Kilosa district (Fig. 1), in the Morogoro region, Tanzania. 

Morogoro Municipal covers an area of 260 km2. The 

district has an average minimum and maximum 
temperature of 16oC and 33oC, respectively. The annual 

rainfall ranges from 821-1505 mm (Ernest et al., 2017). 

The main economic activities include subsistence and 

commercial farming, small-scale enterprises and trade. 
Kilosa district covers an area of 14,245 km2 and 

experiences rainfall from November to May. The dry 

season occurs from June to October. The average annual 

temperature is 24.6oC (Chipwaza et al., 2015). The main 
economic activities include agriculture and livestock 

keeping. Both districts experience a high infestation of 

rodents and cockroaches. 

Figure 1. A map showing the selected study sites 

Study Design 

The study followed a cross-sectional design and was 
conducted from January 2022 to April 2022. Laboratory 

analyses for both cockroaches and rodents were conducted 

mainly in Sokoine University of Agriculture (SUA) 

laboratories. 

Sampling procedures and sample processing 

P. americana and R. rattus were collected from four

randomly selected wards, two from each district. A total of
57 P. americana and 114 R. rattus were trapped from 62

randomly selected households, 22 A. americana from

Morogoro Municipal and 35 from Kilosa District, while 54

R. rattus were from Morogoro Municipal and 60 from
Kilosa District. P. americana were manually caught and

stored in sterile containers, while R. rattus were trapped in

wire cages.

Trapped P. americana and R. rattus were identified 
based on their morphological features with the guidance of 

identification keys (Happold et al., 2013; Picker et al., 

2004). Both P. americana and R. rattus were sacrificed 

with chloroform. Periplaneta americana were 
individually placed in tubes with 5ml of normal saline 

(0.9% NaCl) and shacked manually to dislodge bacteria 

from their body surface; after that soaked in 90% ethanol 

for 5 minutes and dried to further decontaminate their 
external body surface. They were then rewashed with 

sterile normal saline to remove traces of ethanol. Both P. 

americana and R. rattus were dissected aseptically using 

scissors to remove the hindgut. The hindgut contents were 

collected in sterile tubes containing maximum recovery 

diluent media, stored in a sterile cool box with ice cubes, 

and transported to Sokoine University of Agriculture for 

further laboratory analysis. 
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In aseptic conditions, the hindguts of fifty-seven P. 

americana and 114 R. rattus from Morogoro municipal 
and Kilosa district were dissected and pooled. Four pools 

were obtained (two representing the hindguts of P. 

americana and R. rattus from Morogoro municipal, and 

two representing the hindgut of P. americana and R. rattus 
from Kilosa district). The pools have been abbreviated 

using the following key: PA1; P. americana from 

Morogoro district, PA2; P. americana from Kilosa district, 

RR1; R. rattus from Morogoro district, RR2; R. rattus 
from Kilosa district. 

 

DNA extraction 

DNA was extracted from the hindgut content stored in 
buffered peptone water. Genomic DNA was extracted 

using the Quick-DNA universal extraction kit (Zymo 

Research, USA) protocol per the manufacturer’s 

instructions. The quantity and quality of gDNA were then 
measured using a NanoVue Plus spectrophotometer at a 

wavelength of 260nm (A260/A280). A ratio between 1.8 and 

2.0 indicated a high-quality gDNA. 

 
Library preparation and sequencing 

The MinION sequencing techniques of Oxford Nanopore 

technology were used in this study. The MinION 

sequencing libraries were generated using the DNA 
sequencing-barcoding kit (SQK-PCB109-Oxford 

Nanopore Technologies) following the manufacturer’s 

protocol. 

Bioinformatics analysis 

Firstly, the raw reads were subjected to quality trimming 

using Cutadapt V3.4 to remove low-quality reads and trim 

barcode and adopter sequences. The trimmed reads were 

then assembled using Megahit V1.2.9 to generate contigs 
representing the genetic material in the metagenomic 

samples. These contigs were subsequently binned into 

individual microbial genomes using Metabat2 V2.15 after 

aligning the reads to assembled contigs using Bowtie2 
V2.5.1; Metabat2 utilises sequence composition and 

coverage information. The resulting metagenomic bins 

were annotated using Prokka V1.14.6, which predicted and 

annotated protein-coding genes within the bins by 
leveraging the Prodigal gene prediction tool and the NCBI 

non-redundant database. To determine the taxonomic 

composition of the metagenomic samples, we performed 

metagenomic taxonomic classification using Kraken2 
V2.1.3 with the RefSeq database. 

 

Statistical analysis 

R-studio software (V 4.2.3) was used for statistical 
analysis; whereby descriptive statistics was used to 

analyse the relative abundances of bacteria. The Phyloseq 

package was used for diversity analysis. The Chi-square 

and t-test were used to compare the abundance and 
diversity of bacteria genera between the host species and 

areas sampled. Differences were considered to be 

significant at the level of p<0.05. 
 

RESULTS 

The general characteristics of the sequencing data set are 

shown in Table 1. The data set consisted of 65 633 and 772 
874 sequences for R. rattus and P. americana samples 

collected from Morogoro municipal, and 437 465 and 50 

859 sequences for R. rattus and P. americana from Kilosa 

district. A total of 404 575 818 bases were sequenced from 

four pooled samples, most of which were from R. rattus 

from Kilosa (235 119 094) and fewer from P. americana 
from Kilosa (19 708 309). 

 

 

Table 1. General characteristics of each sequencing data 

for each host species collected  

Sample Reads Bases (bp) Number 

of bins 

RR1 65633 23120071 9 
PA1 772874 126628344 19 

RR2 437465 235119094 29 

PA2 50859 19708309 7 

Key; RR1; Rattus rattus from Morogoro municipal, PA1; 

Periplaneta americana from Morogoro municipal, RR2; Rattus 

rattus from Kilosa district, PA2; Periplaneta americana from 

Kilosa district 

 

 

Bacterial Community 

Taxonomic analysis was performed to identify the hindgut 

bacterial community of the two host species sampled. A 

total of 27 bacterial phyla were identified Proteobacteria 

and Bacteroidetes were the most abundant phyla among all 
host species sampled. Proteobacteria was abundant from 

R. rattus from Kilosa district (48%) and P. americana 

(41%) and R. rattus (40%) from Morogoro municipal. 

Bacteroidetes were also highly abundant from P. 
americana from Kilosa district (48%) (Fig. 2A & B). To 

further explore the hind-gut bacterial community of R. 

rattus and P. americana, the bacterial community at the 

genus level was analysed and 806 genera were identified. 
Fifty-one genera with sequence reads above 15 were 

presented in Table 2. Five bacteria genera shared by pool 

samples in the two host species (R. rattus and P. 

americana) were Proteus, Fusobacterium, Escherichia, 
Citrobacter and Bacteroides.  

A chi-square test was performed to determine the 

significant differences in the number of sequences of 

bacterial genera that were shared between the two host 
species (R. rattus and P. americana). From Kilosa district, 

the results showed that the number of sequences of Proteus 

(p<0.001), Fusobacterium (p<0.001), Escherichia 

(p<0.001), Citrobacter (p<0.001) and Bacteroides 
(p<0.001) were significantly higher in R. rattus compared 

to P. americana. For Morogoro municipal, the number of 

sequences of Bacteroides (p<0.001), Citrobacter 

(p<0.001) and Proteus (p=0.01) were also significantly 
higher in R. rattus compared to P. americana. The number 

of sequences of Escherichia (p=0.449) and Fusobacteria 

(p=0.087) showed no significant differences between R. 

rattus and P. americana.  
The significant differences in sequences of shared 

genera were also determined between the two districts 

sampled (Kilosa and Morogoro district). The results 

showed that the number of sequences of Bacteroides 
(p<0.001), Citrobacter (p<0.001), Escherichia (p<0.001) 

and Proteus (p<0.001) were significantly higher in R. 

rattus from Kilosa than that from Morogoro district but 
Fusobacterium (p=0.414) showed no significant 

difference. The number of sequences of Bacteroides 

(p<0.001), Citrobacter (p<0.001), Escherichia (p<0.001), 

Fusobacterium (p<0.001) and Proteus (p<0.001) were 
significantly higher for P. americana from Morogoro 

district than those from Kilosa district. 
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Figure 2. Bacterial composition of different host species (A) and at phylum distribution (B) 

 
 

 

Table 2. Taxonomic classification of bacteria at genus level from pools of the two host species sampled 

Taxonomy (Phylum; Class; Family; Genus) 

Number of sequences 

Kilosa Morogoro 

RR2 PA2 PA1 RR1 

Proteobacteria, Betaproteobacteria, Alcaligenaceae, Achromobacter 15 - - - 
Proteobacteria, Gammaproteobacteria, Moraxellaceae, Acinetobacter 203 - 17 - 

Proteobacteria, Gammaproteobacteria, Aeromonadaceae, Aeromonas 16 - - - 

Verrucomicrobia, Verrucomicrobiae, Akkermansiaceae, Akkermansia 274 - - - 

Proteobacteria, Betaproteobacteria, Alcaligenaceae, Alcaligenes 390 - 60 - 
Bacteroidetes, Bacteroidia, Rikenellaceae, Alistipes 240 - - - 

Firmicutes, Clostridia, Lachnospiraceae, Anaerotignum 30 - - - 

Firmicutes, Bacilli, Bacillaceae, Bacillus 28 - 26 - 

Bacteroidetes Bacteroidia, Bacteroidaceae, Bacteroides 1838 667 972 456 
Firmicutes, Clostridia, Lachnospiraceae, Blautia 29 - - - 

Fusobacteria, Fusobacteriia, Aeromonadaceae, Bordetella 73 - - - 

Proteobacteria, Alphaproteobacteria, Caulobacteraceae, Brevundimonas 17 - - - 

Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Citrobacter 537 86 263 42 
Firmicutes, Clostridia Comamonadaceae, Peptostreptococcaceae, Clostridioides 15 - - - 

Firmicutes, Clostridia, Clostridiaceae, Clostridium 135 - 126 18 

Proteobacteria, Betaproteobacteria, Comamonas 85 - - - 

Proteobacteria, Deltaproteobacteria, Desulfovibrionaceae, Desulfovibrio 70 - 25 - 

Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Enterobacter 239 - 38 17 

Firmicutes, Bacilli, Enterococcaceae, Enterococcus 23 - 62 - 

Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Escherichia 302 88 178 164 

Firmicutes, Clostridia, Ruminococcaceae, Faecalibacterium 27 - - - 
Bacteroidetes, Flavobacteriia, Flavobacteriaceae, Flavobacterium 20 - - - 

Firmicutes, Clostridia, Ruminococcaceae, Flavonifractor 75 - - - 

Fusobacteriota, Fusobacteriia, Fusobacteriaceae, Fusobacterium 290 210 354 310 

Firmicutes, Clostridia, Peptostreptococcaceae, Intestinimonas 44 - - - 
Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Klebsiella 265 - 60 18 

Firmicutes, Bacilli, Planococcaceae, Kurthia 23 - - - 

Firmicutes, Clostridia, Lachnospiraceae, Lachnoclostridium 327 - 41 - 

Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus 272 - 63 30 

Key; PA1; Periplaneta americana from Morogoro district, PA2; Periplaneta americana from Kilosa district, RR1; Rattus rattus from 

Morogoro district, RR2; Rattus rattus from Kilosa district. “- “not found. 
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Table 3. Continued 

Taxonomy (Phylum; Class; Family; Genus) 

Number of sequences 

Kilosa Morogoro 

RR2 PA2 PA1 RR1 

Firmicutes, Bacilli, Streptococcaceae, Lactococcus 18 - - - 

Firmicutes, Bacilli, Bacillaceae, Lysinibacillus 109 - 205 43 
Proteobacteria, Gammaproteobacteria, Morganellaceae, Morganella 203 - 70 - 

Bacteroidetes, Bacteroidia, Muribaculaceae, Muribaculum 30 - - - 

Bacteroidetes, Flavobacteriia, Flavobacteriaceae, Myroides 225 - 18 - 

Bacteroidetes, Bacteroidia, Odoribacteraceae, Odoribacter 40 - - - 
Firmicutes, Clostridia, Oscillospiraceae, Oscillibacter 24 - - - 

Bacteroidetes, Bacteroidia, Tannerellaceae, Parabacteroides 250 - 105 - 

Proteobacteria, Gammaproteobacteria, Morganellaceae, Proteus 396 144 371 306 

Proteobacteria, Gammaproteobacteria, Morganellaceae, Providencia 543 - 139 27 
Proteobacteria, Gammaproteobacteria, Pseudomonadaceae, Pseudomonas 352 - 27 - 

Proteobacteria, Gammaproteobacteria, Moraxellaceae, Psychrobacter 98 - - - 

Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Salmonella 28 - 19 - 

Proteobacteria, Gammaproteobacteria, Yersiniaceae, Serratia 50 - 53 - 
Proteobacteria, Gammaproteobacteria, Shewanellaceae, Shewanella 49 - 98 - 

Bacteroidetes, Sphingobacteriia, Sphingobacteriaceae, Sphingobacterium 60 - - - 

Firmicutes, Bacilli, Staphylococcaceae, Staphylococcus 17 - - - 

Proteobacteria, Gammaproteobacteria, Xanthomonadaceae, Stenotrophomonas 288 70 48 - 
Firmicutes, Bacilli, Streptococcaceae, Streptococcus 16 - - - 

Actinobacteria, Actinobacteria, Streptomycetaceae, Streptomyces 19 - - - 

Proteobacteria, Gammaproteobacteria, Vibrionaceae, Vibrio 16 - - - 

Firmicutes, Clostridia, Peptostreptococcaceae, Acetoanaerobium - - 66 - 

Key; PA1; Periplaneta americana from Morogoro district, PA2; Periplaneta americana from Kilosa district, RR1; Rattus rattus from 

Morogoro district, RR2; Rattus rattus from Kilosa district. “- “not found. 

 

 

Potential Pathogenic Bacteria 

Potential pathogenic bacteria were identified from the 

pooled samples of two host species. Only bacteria genera 

and species with sequence reads above 15 were presented. 
Twenty-four pathogenic genera were identified with 

common pathogenic genera, as shown in Table 3. Among 

pathogenic genera identified, five genera (Proteus, 

Fusobacterium, Escherichia, Citrobacter and 
Bacteroides) were shared by all host species collected 

from two areas sampled. Relative abundances of 

pathogenic bacteria carried by the two host species from 

each sampled site were observed. The highest relative 
abundance of pathogenic bacteria was observed from P. 

americana from Kilosa followed by R. rattus from 

Morogoro district (Fig 3). Pathogenic bacteria were further 

explored at the species level, as shown in Table 4, where 

Escherichia coli, Citrobacter freundii, and Proteus 

mirabilis were found in all host species. Klebsiella 

pneumoneae was found in all hosts except in P. americana 
from Kilosa. Salmonella enterica was also found only in 

P. americana from Kilosa and R. rattus from Morogoro 

district.  

Each bar represents the relative abundance of each 
bacterial taxa (A). (B). A heatmap representing 

abundances of bacterial taxon depicted by colour intensity 

(B). Key; PA1; P. americana from Morogoro district, 

PA2; P. americana from Kilosa district, RR1; R. rattus 
from Morogoro district, RR2; Rattus rattus from Kilosa 

district. 

 
Table 4. Common potential pathogenic bacteria genera found in the pooled samples 

of two host species 

RR1 PA1 RR2 PA2 

Bacteroides Bacteroides Bacteroides Bacteroides 
Citrobacter Citrobacter Citrobacter Citrobacter 

Clostridium Clostridium Clostridium Escherichia 

Enterobacter Enterobacter Enterobacter Fusobacterium 

Escherichia Enterococcus Enterococcus Proteus 
Klebsiella Escherichia Escherichia  
Fusobacterium Klebsiella Klebsiella  
Proteus Proteus Proteus  
 Pseudomonas Pseudomonas  

 Salmonella Salmonella  

 Fusobacterium Fusobacterium  

  Staphylococcus  

  Streptococcus  
    Vibrio   

Key; PA1; Periplaneta americana from Morogoro district, PA2; Periplaneta americana from 

Kilosa district, RR1; Rattus rattus from Morogoro district, RR2; Rattus rattus from Kilosa 

district 
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Table 5. Some potential pathogenic bacteria species found in the pooled samples of two host species. 

RR1 PA1 RR2 PA2 

Bacteroides cellulosilyticus Citrobacter freundii Citrobacter freundii Citrobacter freundii 

Citrobacter freundii Clostridium botulinum Bacteroides cellulosilyticus Escherichia coli 

Escherichia coli Escherichia coli Clostridium botulinum Fusobacterium ulcerans 

Klebsiella pneumoniae Klebsiella pneumoniae Enterobacter hormaechei Proteus mirabilis 
Proteus mirabilis Proteus mirabilis Escherichia coli  

 Salmonella enterica Klebsiella pneumoniae  

  Proteus mirabilis  

  Pseudomonas aeruginosa  

  Fusobacterium ulcerans  

  Salmonella enterica  

Key; PA1; Periplaneta americana from Morogoro district, PA2; Periplaneta americana from Kilosa district, RR1; Rattus rattus from 

Morogoro district, RR2; Rattus rattus from Kilosa district. 

 

 

 

Figure 2. Relative abundances of potential pathogenic 

bacteria from the pooled samples of two host species. Key; 

PA1; Periplaneta americana from Morogoro district, 

PA2; Periplaneta americana from Kilosa district, RR1; 
Rattus rattus from Morogoro district, RR2; Rattus rattus 

from Kilosa district. 

 

 
Next, an alpha diversity on all samples was performed. 

Alpha diversity refers to the diversity of a specific region 

or ecosystem. The observed Shannon and Chao 1 indices 

indicated higher species diversity in rats of the Kilosa 
district and cockroaches of Morogoro municipal (Fig. 4). 

The microbiome diversity in Morogoro municipal was 

higher for cockroaches than for rats. However, it was not 

statistically significant (p>0.05). In Kilosa district, the 
microbiome diversity was higher for rats than for 

cockroaches, but it was not statistically significant 

(p>0.05) (Fig. 5) as well. 

In comparing the two districts, the microbiome 
diversity was high in Kilosa district compared to 

Morogoro municipal, though the difference was not 

statistically pronounced (Fig. 6). When beta diversity was 

assessed. The finding showed that variation of microbial 
communities between samples existed. However, the 

composition was similar between cockroaches from 

Kilosa district and rats from Morogoro municipal (Fig. 7). 

The closer the two sample points are, the more similar 

the bacterial composition of the two samples. Key; PA1; 

P. americana from Morogoro district, PA2; P. americana 
from Kilosa district, RR1; R. rattus from Morogoro 

district, RR2; R. rattus from Kilosa district. 

 

 

Figure 3: Alpha diversity of collected samples 

 
Key; PA1; Periplaneta americana from Morogoro district, PA2; 

Periplaneta americana from Kilosa district, RR1; Rattus rattus 

from Morogoro district, RR2; Rattus rattus from Kilosa district. 

 
 

 

Figure 4: Alpha diversity of collected host species  
 

Key; PA; Periplaneta americana from Morogoro district and 

Kilosa district, RR; Rattus rattus from Morogoro district and 

Kilosa district. 
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Figure 5: Alpha diversity of collected host species from 

two sampled areas.  
 

 

 

Figure 6: Non metric dimensional scaling (NMDS) using 

Bray-curtis dissimilarity 

 
 

DISCUSSION AND CONCLUSION 

The animal gut contains many bacterial communities with 

a complex composition comprising over 500 species. 
Intestinal microbes are a complex and dynamic ecosystem 

that coevolves with their host (Han et al., 2020). Previous 

studies have shown that gut microbiome composition may 

differ among species based on, diet, environmental factors, 
genetics and location (Han et al., 2020; Lee et al., 2020). 

Results showed that the composition of the microbiome 

did not differ between the hosts collected from the two 

areas, but their abundances were varied. Proteobacteria 
and Bacteroidetes were the most abundant phyla compared 

to other phyla.  

Findings from this study regarding the composition of 

gut microbiome between P. americana and R. rattus are 
similar to other previous studies, which showed similar 

bacteria phyla from P. americana and R. rattus (Tinker 

and Ottesen, 2016; Debebe et al., 2017; Han et al., 2020;  

He et al., 2020). Other previous studies reported on the 
influence of geographical location on the composition of 

the gut microbiome (Goertz, Menezes, et al., 2019; Wang, 

2022). Findings from this study also revealed that 

geographical location could influence gut microbiome 

composition as it was found that Proteobacteria and 

Bacteroidetes were the most abundant phyla from hosts 

collected from Kilosa district than that of Morogoro 

municipal. However, there are other factors reported by 

several findings which have more influence on the gut 

microbiome, including species identity (host genetic), sex, 
diet, gut pH, age and others (Vicente et al., 2016; 

Kakumanu et al., 2018; Goertz et al., 2019; Wang, 2022; 

Tinker and  Ottesen, 2016; ).  

Recently, there have been ongoing studies regarding 
gut microbiomes since they provide insight into both 

culturable and non-culturable microbiomes. As reported 

by several previous studies, symbiont bacteria can be used 

for pest control, several tactics including manipulation of 
microbial symbionts have been documented, which results 

in either minimising pest population or reducing their 

chance of transmitting pathogens (Shapiro-ilan and 

Gaugler, 2002; Noman et al., 2019; Pan et al., 2020). For 
instance, Dillon & Dillon, 2004; Arora and Douglas, 2017 

reported that symbiont microorganisms may be genetically 

modified and in turn, become pathogens and induce effects 

on the targeted pest. Several bacteria, including 
Enterobacter species (Arora and Doglas, 2017), Klebsiella 

species, Proteus species and others (Dillon and Dillon, 

2004; Noman et al., 2019) were reported to be involved in 

the control of various insect pests. 
The microbiome diversity observed was higher for 

species from Kilosa district (the rural area) compared to 

that of Morogoro municipal (urban area); however, it was 

not statistically supported. The variation in this diversity is 
perhaps supported by the fact that in our study area, those 

hosts collected from rural environments had a 

heterogeneous environment compared to urban 

environments. These findings are similar to other previous 
studies, which also found that hosts from rural areas had 

higher microbiomes compared to those from urban 

environments (Aimeric et al., 2018; Gurbanov et al., 

2022). This is perhaps due to the fact that in rural areas, 
there is a diversification of food materials, plus the 

hygienic status of rural areas is not much improved; thus, 

hosts are likely exposed to more microbes compared to a 

host of the urban environment. 
Findings from this study also showed the diversity 

within the district sampled whereby in Morogoro 

municipal, the microbiome diversity was observed to be 

higher for P. americana than R. rattus; this is perhaps 
because of the fact that P. americana of urban areas have 

a wide range of habitats which is supported by their body 

size compared to R. rattus thus enable them to consume a 

wide variety of food sources (Kakumanu et al., 2018). On 
the other hand, rats in Kilosa district had a higher 

microbiome than cockroaches. This may be supported by 

the fact that the environmental structure of rural areas 

favours rats more than cockroaches; thus, rats can easily 
access a wider variety of food.  

This study also presents the pathogenic bacteria 

carried by the host species sampled. The relative 

abundance of pathogenic bacteria was high in P. 
americana of Kilosa, followed by R. rattus of Morogoro 

district. Some pathogenic bacteria species reported by 

several previous studies to cause human and animal 
diseases identified from this study include E. coli, C. 

freundii and P. mirabilis. Also, other species were S. 

enterica, K. pneumoneae, and C. botulinum. These 

findings are similar to previous reports highlighting 
pathogenic bacteria found in the gut of P. americana and 

R. rattus (Kakumanu et al., 2018; He et al., 2020; 

Gurbanov et al., 2022). Several studies in Tanzania have 

also demonstrated that rats are potential environmental 
source of zoonotic bacteria and some isolates having 

multidrug straits (Kimwaga et al. 2023; Ndakidemi et al., 
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2023; Mkopi et al., 2024). This is because their biology, 

behaviours, and habitats contribute to their effectiveness in 
spreading diseases. These two host species have been 

numerously reported to be found in indoor environments, 

and various studies have reported on the potentially carry 

pathogenic bacteria in their gut and external surfaces. 
Thus, there is a great chance of these pathogenic bacteria 

being transmitted to humans and animals through direct 

contamination and faeces droppings. Controlling their 

populations is crucial for preventing the spread of 
infectious diseases. This includes maintaining clean 

environments, proper waste management, sealing entry 

points to buildings, and using appropriate pest control 

methods. Additionally, public awareness and education 
about the risks associated with these pests are essential for 

reducing their impact on human health (Kimwaga et al. 

2023; Ndakidemi et al., 2023; Mkopi et al., 2024). 

 

Limitation of the Study 

The gut microbiome composition observed from this study 

focused only on the geographical area where the two host 

species were collected. Other factors, such as species 
genetics, diet, host parameters, and environmental 

parameters, which are claimed to impose more influence 

on the gut microbiome, were not assessed. 

This study summarises the composition of the bacteria 
microbiome between P. americana and R. rattus collected 

from two districts (Morogoro municipal, which is an urban 

area, and Kilosa district, which is a rural area). The 

bacteria composition was more or less similar to the host 
species collected from the two areas sampled. Also, the 

study revealed pathogenic bacteria and symbiont bacteria. 

This study suggests surveillance of these pests to minimise 

outbreaks and transmission of zoonotic diseases. Since this 
study did not focus on factors influencing microbiome 

composition and diversity, further studies are 

recommended to be conducted to see the influence of those 

factors on the gut microbiome. 
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