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Abstract

In the study, the data obtained to describe the body characteristics of the Hairpin were utilized in the businesses that were registered with
Karaman Province Breeding Sheep Goat Breeders Association. Body weights of 130 goats, 2, 3, 4, 5, 6 and 7 years old and 50 goats, 2, 3 and
4 years old, selected by simple random sampling method were used in the data of total 900. In the study, Pearson correlation coefficient for
variables providing parametric test prerequisites, and Spearman correlation analysis for variables not providing parametric test prerequisites.
In the regression analysis, "live weight" dependent variable and other variables were determined as independent variables and parametric and
nonparametric regression methods were applied. Univariate and multivariable regression models were applied for the whole data set. When all
analyzes are evaluated, univariate regression models give lower determination coefficients (R2) than multivariate models. In this case, it has
been deemed appropriate to use a multivariate regression model instead of a univariate model in order to make a correct prediction.However,
in practice, univariate Quadratic or Cubic regression methods can be used for researchers.

Keywords: Regression, Semi-parametric regression models, Parametric regression models, Live weight in the goats, Body measurements

INTRODUCTION

Regression analysis assumes that when the mean
relation between the dependent variable and the independent
variable is expressed by a mathematical function, the
independent variable and the dependent variable are in a
linear relationship.

Regression models are regression models known as
parametric, nonparametric and semi-parametric regression
methods.

All of the approaches available for the semi-parametric
regression model are based on different non-parametric
regression methods. Semi-parametric regression models
summarize complex data sets in a way that we can
understand and maintain important properties while ignoring
the insignificant details of the data in practice, thus allowing
robust decisions to be made [1].

Semi-parametric regression method is widely used in
the analysis of time-dependent data. Generally, longitudinal
data obtained from experiments in the fields of agriculture,
medicine and biostatistics are measured with a continuous
scale depending on the time, and measurements taken at
different times from the same trial unit (individual) take
different values. But the recipients are related to each other.
This is the result of applying multiple behaviors to the same
test units to follow each other [2].

In the majority of longitudinal studies, the effects of
time and continuous independent variables on the resulting
outcome variance are included in the model. Correlation
(autocorrelation) between error variables occurs when
more than one observation is made on the same individual
depending on location and time. In such cases, some
assumptions do not apply. Therefore, making time-related
assessments is a common problem for parametric methods.
Non-parametric methods can be used in such cases. However,
when nonparametric methods are used to analyze the number
of independent variables, it is difficult to make analyzes
and to interpret the graphs. As an alternative method, semi-

parametric models can be used. In semiparametric models,
the effects of chance and time are affected by nonparametric
methods, while the effects of continuous independent
variables are included by methods that are parametric.

The semi-parametric regression model is also called
the "partial linear model" by the fact that it consists of a
combination of parametric and non-parametric regression
functions. In the study, the live body weight was estimated
from different body measurements in the hair follicle by
the multivariate, univariate parametric and nonparametric
regression methods.

MATERIALS AND METHODS

SIn regression analysis, there are two types of linearity
in variables and coefficients (linearity in parameters). The
state of linearity in variables means that the value of each
variable in the model is one; indicates a linear functional
relationship between dependent and independent variables.
Similarly, in coefficients, linearity is the exponent of all
coefficient values in the model and the existence of a linear
functional relationship between the dependent variable and
the coefficient values.

Yi:ﬂ0+ﬂ1Xi+ei (1)

An example of a model is that both the coefficients and
the variables are linear.

K=ﬂ0+ﬁ1X2i+ei (2)

The coefficients are also linear, but the variables are
examples of nonlinear models.

}Ii:ﬂ0+\/F1Xi+ei 3)

Variables are linear, while coefficients are examples of
nonlinear models.

Simple Linear Regression Model

The regression model examines the causality relations-
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hip between a single independent variable and a dependent
variable.

Y = :B() +4X ite
Multiple Regression Model

4)

Models developed for multiple regression analysis resemble
simple linear regression models, with the exception of more
terms, and can be used to examine straightforward, more
complex relationships. For example, suppose that the avera-
ge time E (y) needed to fulfill the data-processing task incre-
ases as the use of computers increases and we think that the
relationship is curve-linear. -

To model the deterministic E(y ) 'B ot ﬂ 1 Xl
component, the following quadratic model can be used ins-
tead of the straight-line model.

2
E(y) =B, + B X, + B, X,
For example, the first-order model

E(y)=p,+ X, +BX,

®)
(6)

(x1, x2) -plane. For our example (and for many real-life
applications), we expect a slope on the response surface and
use a second-order model to model the relationship.

E(y)=py+BiX, + B X, + ;X X, +ﬂ4X12 +ﬂ5X22 (7)
All the models written up to now are called generic li-

near models, because E (y) is a linear function of unknown
parameters. The following model is not linear.

E(y) = ﬁ()eiﬂlx (8)
Because E (y) is not a linear function of unknown model
parameters.

Semi-parametric Regression Models

Semi-parametric regression models are models in which
the dependent variable can be parameterized in relation to
some explanatory variables, but not easily related to some
other explanatory variable or variables. In the semi-paramet-
ric model, linear parametric components form the paramet-
ric part of the model whereas both parametric and non-linear
components form the non-parametric part of the model. This
model is a special case of additive regression models [3],
which allows easier interpretation of the effect of each va-
riable and generalizes standard regression methods. In ad-
dition, the semi-parametric model is a model in which the
dependent variable is linear with some explanatory variables
but not linear with other specific independent variables.
Parametric Methods

Linear: Y=b_+b X )
Inverse: Y =b + (b, /1) (10)
Quadratic: Y=b_+b X +b X* (11)
Cubic: Y=b +bX+b X*+b X’ (12)
Semi-Parametric Methods

Logarithmic: Y =b+ (b, * In(t)) (13)
Power: Y =b_+b X veya In(Y) = In(b)) + (b, * In(t)) (14)

Compound: Y =b * (b ) veya In(Y) = In(b)) + ((b,) *In(t)) (15)
S-curve: Y =et* *® W veya In(Y) = b, + (b /t) (16)
Growth: Y =™~ ®1 "0 veya In(Y) = b, + (b, * t) a7

Exponential: Y =b, * (e*' ") veya In(Y) = In(b)) + (b, ¥t)  (18)

Y= dependent variable

b,= Regression equation constant

b = Regression coefficient

t= numeric value of the independent variable
Multivariate Regression Models

Variable Selection Methods
(ForwardSelection)

(BackwardElimination)

(Stepwise Regression)

E(y) :ﬁo +ﬁ]X1 +ﬁ2X2 ++ﬁka(19)
[4,5,6]

In the survey, the data obtained for the purpose of desc-
ribing the body characteristics of the Hairpin were utilized
within the scope of “Project for the development of subspe-
cies of the hairpin race”, “Project code: Tagem / Ki12013-
027, in the enterprises that have registered the Karpil breed
sheep goat breeders association in Karaman province. The
body measurements of 130 goat selected by simple random
sampling method of 2, 3, 4, 5, 6 and 7 aged females were
used in this study and a total of 50 teens data selected by
simple random sampling method of 2, 3 and 4 elderly mono-
polies were used for monopolies.

The live weights of the goats and body measurements
were taken at the end of the forties in June. Body measu-
rements were made in the cage or on the flat surface of the
cave.

The body measurements measured by goats in 2012, the
measurements made and their anatomical definitions are gi-
ven below.

Height at withers (CY)

Height at rump (SY)

Body length(VU)

Rump Width(SG)

Chest width (GG)

Chest depth(GD)

Chest girth (GC)

Pearl Circle (iC)

The data to be used in the study were randomly selected
from the general data with the MINITAB program. Statisti-
cal package program Syntax Function SPPS 20 (IBM Corp.
Released 2011. IBM SPSS Statistics for Windows, Version
20.0, Armonk, NY: IBM Corp.) was used to evaluate the
data. The level of significance is shown as a. = 0,05.

FINDINGS

Figure 1. Univariate parametric and semi-parametric
regression model graphs

o o o :
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Table 1. Results of univariate parametric and semi-parametric regression models
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Summary Model Estimation of parameters
Methods
R2, % |F SD |SD |p Sabit |bl b2 b3
Heightatlo o jratic [49.8 876 2 |177 Jo.001 2468 |64 0051 i 1 1)?54{
. Quadratic (49, » , .8 |-6, , F s
P 0,09X>
Height at . Y = 4545
m Quadratic |60,4 |1352 |2 177 0,001 (454,5 |-12,1 0,09 - 12,1X
rump 0,09X
Bodyl. Y = 31,78 +
e Linear |54  |209 1 178 0,001 |-89,88 |1,93 5.001X
= 37,28
Rump|. . b 0,001X!
\Width Cubic 31,3 40,2 2 177 10,001 4,79 |0 0,22 |-0,003 Ly 0,028
0,002X3
= 37,28
Chest .. b 0,001X!
width Cubic 46,6 76,8 2 177 0,001 |37,28 {0,001 0,028 0,002 Ly 0.028X-
0,002X%3
C h e s t|Logarith- Y = -247,50 +
e i 24,9 |50 1 178 0,001 |-247,5 |86,06 (86,06 * In(t))
Chest = R
icth Quadratic [79,8 |349,2 |2 177 0,001 |235,56|-5,48 {0,039 - 548X
o 0,039X>
Pearl| . Y = -30,6 +
el Linear 51,1 |186,1 |1 178 0,001 |-30,6 8,7 8,7X

Table 2. Result of multivariate regression model (Stepwise method)

Coefficients
- U ;o
Sinir

. (Constant) -106,2 7,19 14 8 0,001 -120,4

Chest girth 1,8 0,08 33 0001 1,7
(Constant) 1227 758 -16,2 0,001 -137,7
Chest girth 15 011 140 0001 13
Body length 0,6 013 48 0001 04
(Constant) -118,4 7,45 -15,9 0,001 -133,1
Chest girth 13 0,11 11,5 0,001 1,1
Body length 0,5 0,13 3,7 0,001 0,2
Pearl Circle 2,1 0,60 3,5 0,001 0,9
(Constant) -114,0 7,69 -14,8 0,001 -129,1
Chest girth 1,2 0,13 93 0001 09
Body length 0,5 0,13 3,6 0,001 0,2
Pearl Circle 2,0 0,59 3,5 0,001 09
Chest width 0,5 0,23 21 0,041 0,02

-92,0

20 53 0,001
-107,7

1,7 782 0,001
0,9

-103,7

1,

03 79,7 0,001
33

98,8

1,4

0,7 80,1 0,001
3,2

0,9

When the estimation equations for univariate methods are examined, Quadratic or Cubic models give higher R2 value,
unlike the use of continuous linear models (Table 1 and Figure 1).

As a result of the multivariable regression methods, it is possible to estimate body weight by 80% with the regression
equations generated by independent variables of Chest Environment, Body Length, Hip Circumference and Chest Width. As
a result of univariate regression methods, Quadratic or Cubic models predict body weight by about 75% with independent
breast circumference variation. Multivariate regression methods result in an increase of 5% when the Body Length, Thigh
Circumference, and Chest Width arguments are added (Table 2) [7,8].

DISCUSSION and SUGGESTIONS

Some criteria are relevant to determine which statistics
are applicable to the data obtained in a study. Analyzing
the research with appropriate statistical methods also
improves the reliability of the research and provides a
consistent interpretation of the results. For this reason,
variable structures, measurement scales, and consistency
of assumptions are important considerations in statistical
studies.

Using inappropriate regression methods can lead to
incorrect and misleading results. The relationship between
variables must be examined with functional regression
models. The regression model that needs to be used differs
according to the structure of the data, and using the wrong
model can lead to incorrect results. In this case, it is
suggested to establish the most meaningful model suitable
for data structure.

In the study, differences in the mean of the best model
were observed among the results of the different body
regimens included in the model as the univariate independent
variable versus the live weight dependent variable, in the
different regression models applied. In all body dimensions,
all linear and non-linear models were found to give

statistically significant results. It has been seen that most of
the body measurements give more favorable results in the
sense of both R2 and Cubic models. Only in the chest depth
variable the logarithmic model gave the highest R2 value.
It is understood that the Quadratic or Cubic model can be
preferred to the Linear model because all variables except
this give the equal R2 value of the body length and width
of the rider which can be preferred to the Quadratic model.

It is predicted that multivariable regression equations
generated by independent variables of Chest Environment,
Body Length, Thigh Circumference and Chest Width can be
prefered as a result of multivariate stepwise and best subset
regression analyzes in the study.
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